"I Can"
 Mascoma Standards 8th Grade Math

I Can Use Expressions and Equations to Help Me Understand Math

ㅁ I can use properties of integer exponents, including zero and negative exponents to evaluate and simplify
$4^{2} 4^{3}=4^{2+3}$
$=4^{5}$ numerical expressions containing exponents. 8.EE. 1

- I can solve equations of the form $x^{2}=p$ and $x^{3}=n$ using square or cube roots.
8.EE. 2
- I can find square roots and cube roots of perfect squares and perfect cubes.
8.EE. 2
- I Can estimate very large and very small quantities using a single digit times a power of 10. 8.EE. 3

I I Can Compare two quantities written as a single digit times a power of 10 .
8.EE. 3

I I Can perform operations with number expressed in scientific notation, including problems where both decimal and scientific notation are used. 8.EE. 4

- I can use sCientific notation and choose units of appropriate size for measurements of very large or very small quantities. 8.EE. 4

DECIMAL	SCIENTIFIC
NOTATION	NOTATION

Run $=100$
Percent slope
$=($ rise $/$ run $) \times 100$
$=(100 \div 100) \times 100$
$=100$

Run $=100$

Percent slope

$=$ (rise $/$ run) $\times 100$
$=(50 \div 100) \times 100$
$=50$
\square I can interpret scientific notation that has been generated by technology.
8. EE. 4
\square I Can graph proportional relationships and interpret the unit rate as slope. 8.EE. 5
\square I Can Calculate slope on a graph using similar triangles. 8.EE. 6
\square I Can explain why slope is the same between any two distinct points on a non-vertical line using similar triangles. 8.EE. 6
\square I can derive the equations $y=m x$ and $y=m x+b$. 8.EE. 6
\square I can solve equations using the distributive property, combining like terms, and equations with Variables on both sides. 8.EE.7a
\square I can explain linear equations in one variable that give one solution, many solutions, or no solution. 8.EE.7a
\square I Can solve for a given Variable in terms of
 another Variable. 8.EE. 8
\square I can explain a system of linear equations graphically or algebraically, including those that have one solution, many solutions, or no solution. 8.EE.8b
\square I can solve real-world problems involving a system of linear equations. 8.EE.8C

I Can Use Geometry to Help Me Understand Math

\square I can use the properties of translations, rotations, and reflections on line segments, angles, parallel lines, or geometric figures. 8.G.4

I I can show and explain that two figures are congruent using transformations. 8.G.4

- I Can determine the new coordinate of a figure give a dilation, translation, rotation or reflection. 8.G. 3
- I can show and explain how the angle-sum and exterior-angle theorems of a triangle are true. 8.G.1b

Finutor

PYTHAGORAS THEOREM
> In a right angled triangle three sides: Hypotenuse, Perpendicular and Base. The base and the perpendicular make an angle is 90°.So, according to Pythagorean theorem:
$(\text { Hypotenuse })^{2}=(\text { Perpendicular })^{2}+(\text { Base })^{2}$
Pythagoras Theorem Proof:
Given: $\triangle A B C$ is a right angled triangle where $\angle B=90^{\circ}$
And $A B=P, B C=b$ and $A C=h$

To Prove: $\quad \mathbf{h}^{\mathbf{2}}=\mathbf{p}^{\mathbf{2}}+\mathbf{b}^{\mathbf{2}}$

- I Can identify angle pairs Created by parallel lines cut by a transversal and explain which angle pairs are congruent or supplementary and why. 8.G.1b
- I can give or explain a proof of the Pythagorean Theorem and its Converse. 8.G. 6

I Can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. 8.G.7

- I Can use the Pythagorean Theorem to find the distance between two points on a coordinate system. 8.G.8
- I Can desCribe patterns in speCial right triangles. 8.G.5
- I Can use formulas for volumes to solve real world and mathematical problems involving cones, cylinders, and spheres. 8.G.9

I Can use Statistics and Probability to Help Me Understand Math
 \square I can construct and interpret scatter-plots and describe the relationships shown in a scatter plot (clustering, outliers, positive/negative associations, linear/nonlinear associations). 8.SP.1

ZI Can sketCh a line of best fit on a sCatter plot, justify the location of the line, and explain why or why not a given line is a good fit. 8. SP. 2

II Can write the equation of a line of best fit and use it to make predictions. 8.SP. 2

ZI Can explain what the slope and y intercept mean in terms of the situation. 8.SP. 4

II Can construct two-way frequency and relative frequency tables to summarize bivariate categorical data. 8. SP. 3

ZI Can desCribe, interpret, and justify inferences in patterns of association between the two variables in two-way frequency and relative tables. 8.SP. 4

I can Use the Number System to Help Me Understand Math

II can explain the difference between a rational and an irrational number. 8.NS. 1

II Can convert either repeating or terminating decimals into a fraction. 8.NS. 1

DI Can write a decimal approximation for an irrational number to a given decimal place. 8.NS.1

II Can place rational and irrational numbers on a
 number line. 8.NS. 2
II can estimate the value of an expression that includes an irrational number and justify my estimation. 8.MS.2

I Can Use the Number System to Help Me Understand Math

\square I Can explain what a function is. 8.F.I

ZI can determine if a table, graph, or set of ordered pairs is or is not a function and justify my conclusion. 8.F.1

II can distinguish between linear and nonlinear functions given a table, graph, or equation and justify my conclusion. 8.F. 3

ZI Can determine which of two functions (represented algebraically, graphically, and numerically in tables or by verbal descriptions) has the greater rate of Change. 8.F. 4

II can write the equation of a line (in the form $y=m x+$ b) given a point and a slope, 2 points, a table, or the graph of the line. 8.F. 3
-I Can explain a real world situation from an equation, table, or graph (explain the rate of Change/slope and the y intercept in context-linear only). 8.F. 5
\square I can describe a relationship as increasing or decreasing, linear or nonlinear, from an equation, table or graph. 8.F.5
\square

